انرژی هستهای انرژی گرمایی آزاد شده حاصل از شکافت اتم اورانیوم است که از آن برای تولید بخار آب و گرداندن توربینهای تولید برق استفاده میشود. اورانیوم معدنی، طی فرآیندی در تأسیسات فرآوری باید به گاز هگزافلوراید یا uf6 تبدیل شود، و سپس با تزریق به شبکهای از سانتریفیوژها غنی شده و سپس قابل استفاده است.البته فقط اورانیم نیست که با آن می توان انرژی هستهای تولید کرد.مثلاَ از پولوتونیم یا دیگر رادیواکتیو ها نیز می توان انرژی هستهای تولید نمود. این انرژی در دسته انرژیهای نیمهپاک و غیرقابل تجدید تقسیم بندی میشود. به این دلیل نیمه پاک که زباله ها و پس ماندهای آن هزاران سال در محیط زیست باقی مانده و برای سلامت موجودات زنده بسیار خطرناک هستند. با وجود این پس از مقایسه آماری بین خطرات همه انواع انرژی، انرژی هستهای جزو بهترین گزینه های موجود بشمار میآید.
وقتی که صحبت از مفهوم انرژی به میان میآید، نمونههای آشنای انرژی مثل انرژی گرمایی ، نور و یا انرژی مکانیکی و الکتریکی در شهودمان مرور میشود. اگر ما انرژی هستهای و امکاناتی که این انرژی در اختیارش قرار میدهد، آشنا شویم، شیفته آن خواهیم شد.
آیا میدانید که
انرژی گرمایی تولید شده از واکنشهای هستهای در مقایسه با گرمای حاصل از سوختن زغال سنگ در چه مرتبه بزرگی قرار دارد؟
منابع تولید انرژی هستهای که بر اثر سیلابها و رودخانه از صخره شسته شده و به بستر دریا میرود، چقدر برق میتواند تولید کند؟
کشورهایی که بیشترین استفاده را از انرژی هستهای را میبرند، کدامند؟ و ... .
نحوه آزاد شدن انرژی هستهای
میدانیم که هسته از پروتون (با بار مثبت) و نوترون (بدون بار الکتریکی) تشکیل شده است. بنابراین بار الکتریکی آن مثبت است. اگر بتوانیم هسته را به طریقی به دو تکه تقسیم کنیم، تکهها در اثر نیروی دافعه الکتریکی خیلی سریع از هم فاصله گرفته و انرژی جنبشی فوق العادهای پیدا میکنند. در کنار این تکهها ذرات دیگری مثل نوترون و اشعههای گاما و بتا نیز تولید میشود. انرژی جنبشی تکهها و انرژی ذرات و پرتوهای بوجود آمده ، در اثر برهمکنش ذرات با مواد اطراف ، سرانجام به انرژی گرمایی تبدیل میشود. مثلا در واکنش هستهای که در طی آن 235U به دو تکه تبدیل میشود، انرژی کلی معادل با 200MeV را آزاد میکند. این مقدار انرژی میتواند حدود 20 میلیارد کیلوگالری گرما را در ازای هر کیلوگرم سوخت تولید کند. این مقدار گرما 2800000 بار برگتر از حدود 7000 کیلوگالری گرمایی است که از سوختن هر کیلوگرم زغال سنگ حاصل میشود.
کاربرد حرارتی انرژی هستهای
گرمای حاصل از واکنش هستهای در محیط راکتور هستهای تولید و پرداخته میشود. بعبارتی در طی مراحلی در راکتور این گرما پس از مهارشدن انرژی آزاد شده واکنش هستهای تولید و پس از خنک سازی کافی با آهنگ مناسبی به خارج منتقل میشود. گرمای حاصله آبی را که در مرحله خنک سازی بعنوان خنک کننده بکار میرود را به بخار آب تبدیل میکند. بخار آب تولید شده ، همانند آنچه در تولید برق از زعال سنگ ، نفت یا گاز متداول است، بسوی توربین فرستاده میشود تا با راه اندازی مولد ، توان الکتریکی مورد نیاز را تولید کند. در واقع ، راکتور همراه با مولد بخار ، جانشین دیگ بخار در نیروگاههای معمولی شده است.
سوخت راکتورهای هستهای
مادهای که به عنوان سوخت در راکتورهای هستهای مورد استفاده قرار میگیرد باید شکاف پذیر باشد یا به طریقی شکاف پذیر شود.235U شکاف پذیر است ولی اکثر هستههای اورانیوم در سوخت از انواع 238U است. این اورانیوم بر اثر واکنشهایی که به ترتیب با تولید پرتوهای گاما و بتا به 239Pu تبدیل میشود. پلوتونیوم هم مثل 235U شکافت پذیر است. به علت پلوتونیوم اضافی که در سطح جهان وجود دارد نخستین مخلوطهای مورد استفاده آنهایی هستند که مصرف در آنها منحصر به پلوتونیوم است.
میزان اورانیومی که از صخرهها شسته میشود و از طریق رودخانهها به دریا حمل میشود، به اندازهای است که میتواند 25 برابر کل مصرف برق کنونی جهان را تأمین کند. با استفاده از این نوع موضوع ، راکتورهای زایندهای که بر اساس استخراج اورانیوم از آب دریاها راه اندازی شوند قادر خواهند بود تمام انرژی مورد نیاز بشر را برای همیشه تأمین کنند، بی آنکه قیمت برق به علت هزینه سوخت خام آن حتی به اندازه یک درصد هم افزایش یابد.
مزیتهای انرژی هستهای بر سایر انرژیها
بر خلاف آنچه که رسانههای گروهی در مورد خطرات مربوط به حوادث راکتورها و دفن پسماندهای پرتوزا مطرح میکند از نظر آماری مرگ ناشی ازخطرات تکنولوژی هستهای
مصارف صلح آمیز انرژی هسته ای
کاربردهای دیگر فیزیک هسته ای
1- برای کشف مطلبی اگر احتیاج به تجزیه و تحلیل موادی باشد که هیچ گونه امکان کنترلی روی آن نیست چه کاری میتوان انجام داد؟ مثلاً اگر بخواهیم مقداری خاک کفش مشخص مظنونی یا موی سر یک انسان و یا نفت خام یک کشتی را که مقداری از کالای خود را بطور غیر قانونی در جای دیگر فروخته است تجزیه و تحلیل نمایید، چه کاری میتوانیم بکنیم؟ البته میتوان از روش شیمیایی استفاده کرد؛ اما روش سریع و مطمئن تری هم وجود دارد. نمونه ای از ماده ای را که نیاز به تجزیه دارد برداشته و آن را با ایزوتوپ رادیواکتیو مخلوط میکنیم، نمونه رادیواکتیو شده را در یک راکتور تحقیقاتی به وسیله نوترون بمباران میکنیم. با جذب نوترون نمونه پایدار شده و اتم های جسم مورد آزمایش نیز رادیواکتیو میشوند و تابش میکنند. مقدار تابش برای هر عنصر متفاوت است. بنابراین اگر ده عنصر مختلف در نمونه داشته باشیم، ده نوع تابش مختلف نیز خواهیم داشت. از روی این تابشها میتوان نوع و میزان عناصر تشکیل دهنده نمونه را مشخص کرد. از این روش میتوان برای ردیابی آلودگی هوا و هم چنین آلودگی دریا توسط نفت کشها استفاده کرد. با آزمایش 40 نوع نفت مختلف که در نقاط مختلف جهان استخراج میشوند دانشمندان به این نتیجه رسیدند که در تمام مواد نفتی هفت نوع عنصر مشترک وجود دارد. اما مقدار آنها در نفتی که در یک نقطه استخراج میشود با نفت نقطه دیگر دنیا متفاوت است.
هنگامی که مواد نفتی در جایی مشاهده میشوند نمونه ای از آن به آزمایشگاه برده شده و در معرض تابش نوترونی قرار میگیرد و به این ترتیب عناصر مختلف آن و مقدار آنها مشخص میشود. و میتوان به طور دقیق اعلام کرد که کدام کشتی مسئول آلوده سازی بوده است.
یک روش ساده و سریع، برای تجزیه هوای آلوده نیز وجود دارد. ابتدا وسیله صافی هایی آلودگی هوا گرفته میشود. و سپس به وسیله همان روشی که در بالا توضیح داده شده نوع و مقدار عناصر زیان آور موجود درا آن مشخص میشود. با تهیه نقشه های برای آلودگی هوا مشابه نقشه های تغییرات جوی، میتوان پیش گویی هایی در مورد آلودگی هوا انجام داد و اقدامات لازم را در رابطه با پاکیزه نگه داشتن هوا انجام داد.
2- یکی دیگر از کاربردهای تابش های هسته ای تصویر برداری است. همانطور که میدانید برای تصویر برداری از اجسام تیره ( کدر ) مثل بدن انسان از اشعه ایکس استفاده میشود. حالا اگر از اشعه ای پرانرژی تر از اشعه X استفاده کنیم، قابلیت نفوذ در عمق بیشتری را دارد و به این ترتیب از اجسام ضخیم تر نیز میتوان عکس برداری کرد. اشعه گاما خیلی از اشعه X قوی تر است و میتواند در فلزات و اجسام تیره به قطر چند اینچ نفوذ کند و این امکان را برای مهندسین فراهم کند تا داخل ماشین آلات را ببینند.
3- ردیابی ایزوتوپ رادیواکتیو را تقریباً در تمام مراحل تأسیسات صنعتی پتروشیمی میتوان مشاهده نمود. هنگام کشف و استخراج نفت، دانشمندان میله های رادیواکتیو را داخل چاههای آزمایشی فرو برده، سپس میزان انتشار تشعشع رادیواکتیو را در طبقات مختلف اندازه میگیرند زمین شناسان میزان بازتاب اشعه رادیواکتیو را ثبت نموده و یک تصویر واضح و دقیق از طبقات زیرین جهت حفاری بیشتر برای رسیدن به نفت در آن منطقه یا متوقف کردن کار به دست میآورند، در تأسیسات تصفیه و پالایش از ردیابی های ایزوتوپ های رادیواکتیو جهت دنبال کردن مواد پتروشیمی و آماده سازی آنها در قسمتهای مختلف استفاده میشود. در مرحله نهایی محصولات مواد نفتی تصفیه شده جهت تعیین درجه خالص بودن آنها با استفاده از ایزوتوپهای رادیواکتیو آزمایش میشوند در هنگام انتقال مواد نفتی در فاصله های زیاد، چون شرکتهای مختلف نفتی از لوله های نفت مشترک استفاده میکنند ردیابی ایزوتوپی مختلف جهت علامت گذاری ابتدای انتقال هر محموله نفتی به کار برده میشوند.
هیچ نظری موجود نیست:
ارسال یک نظر